注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

欢迎光临月亮飞船的博客

用博客作平台传播科学新闻 以翻译为途径普及科学知识

 
 
 

日志

 
 
关于我

博主胡德良:邢台学院外语系英语教授,中国译协专家会员,河北省译协常务理事,邢台市译协副会长。爱好翻译,内容涉及宇宙探秘、医疗卫生、家庭保健、生命科学、能源科学、地球科学、环境科学、散文小说和纪实文学等领域。所译文章曾见于《光明日报》、《科技日报》、《健康时报》、《健康报》、《英语世界》、《英语知识》、《科技英语学习》、《科学之友》、《科学与文化》、《世界科学》、《生命世界》等全国各大报刊。博客特色:英汉对照、图文并茂,融趣味性、科学性、知识性为一体。

网易考拉推荐

二十一世纪的天文学教学(组图)  

2009-11-14 18:49:15|  分类: 宇宙探秘 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |


通过一项全国性的教学研究,亚利桑那大学史都华天文台天文学教育中心(CAE)常务主任爱德华·普拉瑟、加州州立理工大学波莫纳分校物理学教授亚历山大·鲁道夫、以及CAE项目总监吉娜·布里森登发现:在针对非理科生开设的天文学课程中,互动学习策略可以显著地增进学生对天体物理学核心概念的理解。

Teaching and Learning Astronomy in the 21st Century

Edward E. Prather, Alexander L. Rudolph, and Gina Brissenden   

 胡德良

You’re lecturing to your introductory college astronomy class about Newton’s law of gravitation. You’ve carefully explained that the gravitational force depends on the product of the two masses involved and on the inverse square of the distance between them. You’ve shown a few examples or perhaps videos and animations to help your students connect the abstraction of an equation to the real physical world. You may assign thoughtful homework problems, and you encourage the students to ask questions if they don’t understand, either in class or during your office hours. You’re known as a good lecturer, and your students always rate you highly at the end of the term. Yet when you give your exam, you’re dismayed to see how many of them can’t answer straightforward questions of the type you covered in class and assigned as homework. So why does the same thing happen to instructors all over the country?    假如你在大学的基础天文学课堂上讲课:你认真地解释了引力的大小跟两个相关物体质量的乘积成正比,跟两者距离的平方成反比;你向学生们展示了几个实例,或者你也可能为他们播放了录像和动画,以帮助学生把抽象的方程式跟实际的物理世界联系起来;你可能为学生布置引人深思的家庭作业问题,而且你还鼓励学生——不管是上课时间还是办公时间,不懂就问。大家都知道你讲课讲得好,学生在期末评教的时候总是给你的评价很高。然而考试之后,当你看到有多少学生不会回答课堂上讲过的和作业中布置过的简单问题时,你就会感到灰心丧气。那么,为什么类似的情况一直发生在全国教师们的教学中呢?
 Astronomy-education researchers have been working to solve that problem and many others facing instructors of astronomy survey courses for nonscience majors. Such courses are commonly called Astro 101. During a series of investigations conducted at the University of Arizona, education researchers have developed conceptual questions used to assess students’ understanding of core topics in such courses. Two of the questions are “At what location between the Earth and Moon does the net gravitational force on a spaceship become zero as it travels between the two bodies?” and “Would a waxing gibbous Moon ever be above the horizon during daytime?”  天文学教育研究人员一直在努力解决这个问题和为非理科生讲授天文学概况的教师们所面临的其他问题。为非理科生开设的天文学课程通常被称为天文学101。在亚利桑那大学进行的一系列调查中,研究人员提炼出一些跟概念有关的问题,用来评估学生对这门课程中核心问题的理解情况。其中的两个问题是:太空船在地球和月球之间航行时,处于什么位置的时候太空船所受到的净引力为零?盈月在白天会不会一直呆在地平线以上?
 After traditional lecture-based instruction, one student (Jennifer) stated in response to the gravity question, “halfway, because exactly halfway causes the Moon’s and Earth’s gravitational pulls to cancel out.” In response to the lunar-phase question, another student (George) answered, “No, because this phase only occurs when the Sun illuminates it during our nighttime.” Those responses indicate that after instruction Jennifer and George still had conceptual and reasoning difficulties common among their peers prior to instruction.  经过传统的课堂教学之后,一个学生(詹妮弗)针对那个引力问题做出了回答:处于两者中间时净引力为零,因为恰好在中间时才会致使月球和地球的引力抵消。另外一个学生(乔治)针对月相的问题做出了回答:不会,因为只有夜间太阳照耀在月球上时才会显示出这种月相。这些回答表明:在接受教育指导之后,詹妮弗和乔治在概念上和推理上仍然存在难题,而这些都是他们的同学在没有接受相关教育指导之前经常遇到的难题。
 By the second time Jennifer and George answered those questions, they had both participated in an interactive learning activity designed to help Astro 101 students confront common misconceptions. After completing the activity on gravity, Jennifer correctly answered, “Closer to the Moon than to Earth, because Earth has a greater force on the space-ship than the Moon does. But when the spaceship is closer to the Moon, Earth loses some force while the Moon gains some, until their strengths become equal.” And George was now able to correctly reason that “this phase is highest in the sky at 9 PM, therefore rising 6 hours earlier at 3 PM and setting at 3 AM. So yes, it would be visible for some short time between 3 PM and 6 PM in the daytime.”  在第二次回答那些问题之前,詹妮弗和乔治都参加了一项互动式的学习活动,该活动是为了帮助修习天文学101的学生对付常见的概念错误而设计的。完成了有关引力的活动之后,詹妮弗做出了正确的回答:处于距月球较近、距地球较远的位置,因为地球对太空船的引力比月球大。当太空船靠近月球的时候,地球的引力就会失去一些,而月球的引力就会增加一些,直到来自两者的引力平衡为止。现在乔治也能够做出正确的推理:这个时段的月球在晚上9点钟时处于天空最高的位置,因此月出在6小时之前的下午3点钟,月落在凌晨3点钟。那么,白天期间有一小段时间——在下午3点和下午6点之间是处于地平面以上的。
 Improving scientific literacy  提高科学素养
 Research on the teaching and learning of Astro 101 has an important role to play in improving our nation’s understanding of the scientific process and of the role science plays in society. Last year, NSF reported that according to its Science and Engineering Indicators, only about 25% of the country’s adults were scientifically literate. Astro 101 courses reach nearly 250 000 college students each year. An astonishing 10% of all US college students take a survey astronomy course, which makes Astro 101 one of the most popular introductory science courses. For many of those students, Astro 101 will be the final science course they take for the rest of their lives. The quality of their astronomy education may therefore have a lasting impact on their scientific literacy and their attitudes toward science.  在提高全国人民对科学过程的认识和对科学的社会作用的认识方面,天文学101的教学研究起着重要的推动作用。去年,美国国家科学基金会报道:《科学与工程学指标》显示,美国只有大约25%的成年人懂科学。每年,将近25万大学生接触到天文学101这门课程。令人吃惊的是,全美有10%的大学生选修天文学概况之类的课程,这使得天文学101成为最受欢迎的基础科学课程之一。对于其中的许多学生来说,天文学101将是他们一生中所学习的最后一门科学课程。因此,天文学教育的质量对于他们的科学素养以及他们对待科学的态度都可能会产生永久的影响。
 The overwhelming majority of students taking Astro 101 are nonscience majors. They represent our society’s future business leaders, lawyers, journalists, politicians, historians, and—most critically—schoolteachers. As many as 40% of students taking introductory science courses say that they intend to become licensed teachers. Schoolteachers play a critical role in inspiring and training the next generation of students to join the STEM disciplines: science, technology, engineering, and mathematics. Improving the scientific knowledge, attitude toward science, and teaching skills of prospective teachers must be critical goals for Astro 101 courses. Unfortunately, middle- and high-school teachers often emerge from college unprepared to teach their students about astronomy and space science. With so much at stake, it is clearly in our nation’s best interests to improve the teaching and learning of Astro 101.  绝大多数选修天文学101的学生是非理科生,他们代表着社会上未来的企业领导、律师、新闻记者、从政人员、历史学者,而且最关键的是——他们有可能成为教师。在参加基础科学课程学习的学生中,多达40%的学生表示他们打算成为具有资格证的教师。在激励和培养下一代学生投身于科学、技术、工程和数学四大学科(STEM)的过程中,教师起着关键的作用。丰富学生的科学知识、端正学生的科学态度、提高未来教师的教学技巧,必将是天文学101这门课程最重要的目标。遗憾的是,初高中的老师们往往是初出茅庐,在毫无准备的情况下就开始向学生讲授天文学和太空科学了。在这样的危急关头,改进天文学101的教学显然是符合国家最高利益的。
 Over the past 10 years, astronomy-education researchers have made significant gains in their understanding of how students learn the subject. Much of that work has intentionally followed the successful path blazed over the previous two decades by physics-education researchers. Physics-education research (PER) has shown that interactive learning strategies significantly improve student understanding. Astronomy education research (AER) has begun to show that carefully adapted versions of those research-validated learning strategies can achieve large gains in the Astro 101 classroom. To determine the effectiveness that new and innovative teaching strategies are having on Astro 101 students, we have conducted a national study involving nearly 4000 students at 31 colleges and universities. Before discussing the key results of our study, we share some highlights from PER that have influenced our work.  在过去的十年中,天文学教育研究人员获得了具有重大意义的成果,他们认识到学生是如何学习天文学的。在这方面,大量的研究工作有意地重复了过去的二十年中由物理学教育研究人员所开辟的成功之路。物理学教育研究(PER)表明,互动学习策略可以明显地提高学生的理解能力。天文学教育研究(AER)也逐渐证明了这一点:在那些具有研究效度的学习策略中,认真选取合适的策略,可以使天文学101的课堂教学收获倍增。为了确定这些革新后的教学策略对修习天文学101的学生效果如何,我们进行了一项全国性的研究,涉及31所高等院校的近4000名学生。在讨论我们的主要研究成果之前,先来分享一些影响了我们研究工作的、来自PER的重要观点。
 Physics education leads the way . . .  物理学教育一马当先
 Over the past several decades, a number of highly effective research and curriculum-development models have emerged from the PER community.5 (See also the PHYSICS TODAY articles by Edward Redish and Richard Steinberg, January 1999, page 24, and by Carl Wieman and Katherine Perkins, November 2005, page 36.) Physics-education researchers have made much progress toward determining what naive misconceptions and reasoning difficulties students have in introductory physics. The results of that research have been used to develop curricula that specifically target those difficulties. The most successful instructional strategies have focused on getting students to become actively engaged in their own learning, as opposed to passively listening to lectures.   在过去的几十年中,物理学教育研究界出现了一些效果显著的研究模式和课程优化模式(见《今日物理》19991月号第24页由爱德华·雷德什和理查德·斯坦伯格撰写的论文,以及200511月号第36页由卡尔·威恩曼和凯瑟琳·珀金斯撰写的论文)。物理学教育研究取得了巨大的进展,查明了学生学习基础物理学时所容易犯的低级概念错误和所遇到的推理困难。这一研究成果一直运用在改进课程教学上,使教学目标明确地指向学生的难题。最成功的教学策略是:把重点放在让学生积极参与到自己的学习中来,而不是被动地听讲。
 A necessary step in the progress of PER was the creation of research-validated assessment instruments that let instructors measure the effectiveness of their instruction. Among the first such assessment instruments was the widely adopted Force Concept Inventory. The FCI is a collection of 30 multiple-choice questions on the basic concepts of Newton’s laws. They are designed to force students to choose between Newtonian concepts and “common-sense” alternatives. The FCI was widely adopted in the physics community because it focused on a topic central to all first-term introductory courses, and also because its simple design enabled instructors to easily measure how much students gained in their understanding.  在物理教育研究过程中,一个必要的步骤是建立具有研究效度的评估手段,使教师能够检验教学效果。在第一批评估手段中,包括被广泛采用的引力概念测试题库(FCIFCI是一组有关牛顿定律基本概念的选择题,由30个小题组成。FCI的设计是为了让学生不得不从牛顿定律的概念和普通观念之间做出选择。FCI在物理界得到广泛地应用,因为它所注重的主题对第一学期开设的所有基础课都很重要,而且其简单的设计能够使教师很容易地测定学生们在理解过程中的收获如何。
 That wide use allowed Richard Hake in 1998 to report a meta-study of FCI results from 6000 students enrolled in classrooms all over the country. As a measure of student learning in a particular course, Hake calculated the normalized learning gain

g =(post%pre%)/(100 –pre%),

where pre% and post% are class-averaged scores in answering the FCI questions before and after instruction. The normalization denominator minimizes the dependence of g on the different levels of student understanding at the time of the pre-course test.
 理查德·黑克大量使用了FCI,他在1998年报道了一项有关FCI测评结果的元研究,该研究涉及全国范围内登记在册的6000名学生。黑克把FCI作为学生学习某一门特定课程的检验手段,他对学生的学习收获进行了标准化的计算:g =(post%pre%)/(100 –pre%)。其中〈pre%〉和〈post%〉是以教学班为单位在学习之前和学完之后分别回答FCI问题时的平均得分。公式中这个标准化的分母在学习前测试时可以使学生们不同的理解水平对学习收获的影响最小化。
 As shown in figure 1, Hake’s study yielded strong evidence that students in classes that used interactive learning strategies outperform those in traditional lecture-based classrooms. Through many such validation studies, the PER community provided evidence that helped generate acceptance of new instructional modes in the physics community.  就象图表1中所显示的那样,黑克的研究提供了有力的证据:在运用互动学习策略的教学班里,学生的学习成绩比那些传统的、以讲解为主的教学班成绩更好。通过许多这样的效度研究,物理教育研究界拿出了证据,促进了物理学界对这些新型教学模式的认可。

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

【图表1】此图表显示,在基础大学物理课程中,运用不同的教学策略后学生学习收获的分布情况。在学习这门课程之前,要利用包括三十个问题的引力概念测试题库对每个学生进行测试,等学完这门课程之后再次进行同样的测试,据此计算出教学班的学习收获参数g(见图表下面所标明的)。红色柱状图代表以传统讲解为基础的教学班;绿色柱状图代表利用互动学习策略的教学班。该图表表明,利用互动策略的教学班比起较为传统的教学班成绩要好得多。

 . . . and astronomy follows  天文学教育紧随其后
 The highly successful PER work offered a well-marked path for the AER community to follow in developing effective instructional strategies and assessment instruments for the Astro 101 classroom. Our long-term goal was to perform the necessary research that would culminate in a national study, similar to Hake’s, on the effectiveness of teaching Astro 101. The list of research and development tasks below provides an outline of the essential steps undertaken along the path to this national study:  物理教育研究取得了巨大的成功,为天文学教育研究界提供了一条明确的路线,天文学教育界可以沿着这条路线,为天文学101的课堂教学开发有效的教学策略和评估手段。我们的长期目标是:对天文学101 的教学效果进行必要的调查,进而完成一项类似于黑克所进行的全国性研究。下面列出的研究与开发任务是一份纲要,表明了在进行这项全国性研究的过程中需要采取的基本研究步骤。
 ●Carry out systematic investigations designed to elicit students’ conceptual and reasoning difficulties on fundamental topics common to Astro 101 courses.  进行系统的调查,调查问卷的设计要能够查清学生在天文学101课程中常见的、跟基础概念和推理相关的难题。
 ●Develop active-engagement instructional strategies appropriate for the Astro 101 classroom that have been shown to significantly increase student understanding of core topics.  开发可以积极参与的、适合天文学101教学班的教学策略,业已证明这些教学策略可以显著地增进学生对核心问题的理解。
 ●Create professional-development programs that help instructors learn how to effectively implement proven instructional strategies.  创办业务提高班,帮助教师们学习如何有效运用已经得到证明的教学策略。
 ●Develop research-validated assessment instruments that instructors can use to measure their students’ gain in understanding of topics central to Astro 101.  开发具有研究效度的评估手段,教师们可以运用这些手段来测评学生在天文学101关键问题的理解方面所得到的收获。
 Although the results from PER were very helpful to the astronomy-education researchers, there are fundamental differences between the two fields. First, the courses and student populations studied in PER and AER are very different. Introductory college physics is aimed at science and engineering majors, while Astro 101 is designed primarily for nonscience majors. Second, on a practical level, the development of curricular materials for Astro 101 is constrained by the lack of recitation sessions, labs, and teaching assistants. The lecture portion of the Astro 101 class is commonly the only time instructors meet with their students.  尽管来自PER的成果对从事天文学教育的研究人员非常有帮助,但是在这两个领域之间存在一些基本的差异。首先,PER AER所研究的课程和学生群体差别很大。基础大学物理的开设是针对理工科大学生,而天文学101主要是为非理科生设计的。其次,从实际情况来讲,由于没有复习课、没有实验课、缺少教学助手,天文学101课程资料的开发受到限制,天文学101教学班的上课时间通常是教师跟学生接触的唯一时段。
 So instructional strategies must resolve conceptual and reasoning difficulties without significant help from the instructor, and they must be designed for use in large lecture halls with fixed seats. Furthermore, because new strategies require instructors to give up precious class time normally spent lecturing, teaching innovations must be relatively brief.  因此,天文学101的教学策略一定要在没有教师大力帮助的情况下解决学生的概念和推理难题,教学策略的设计一定要适合于有着固定座位的大班教学。此外,由于新的教学策略要求教师缩短以往正常的课堂讲课时间,所以教学改革策略在课堂上的实施时间必定会较短。
 Within the Astro 101 teaching community, three active engagement strategies have been widely adopted and have been shown to improve students’ understanding: Think-Pair-Share (called peer instruction in the PER community), Lecture-Tutorials, and Ranking Tasks (see the box on page 43). Those strategies are designed to have small groups or pairs of students work together during the standard classroom period, typically following a short 10- to 20-minute lecture.  在天文学101教学界内部,广泛采用了学生积极参与的三个教学策略,而且已经证明这些策略可以提高学生的理解能力。它们是:独立思考-对子活动-分享答案(该策略在物理教育研究界被称为同侪教学),讲解-指导和排序任务(见文后图解)。这些教学策略有计划地把学生分成小组或两人一组,在标准的教学时间内一起进行活动,通常在活动之前有一个1020分钟的简短讲解。
 Each strategy represents a different type of interactive learning activity. They target known conceptual difficulties and promote active intellectual engagement. By discussing challenging questions, students get to explore the reasoning behind their answers. In doing so, they improve their reasoning skills and their understanding of core topics. Systematic studies have shown that the strategies can improve students’ understanding by two full letter grades beyond what traditional lectures accomplish.  每一个教学策略代表一个不同类型的互动学习活动,目标是解决已知的概念难题,促进积极动脑参与。通过讨论具有挑战性的问题,学生能够探讨答案背后隐藏的道理,因此他们提高了自身的推理技巧,增进了对核心问题的理解。系统的研究显示:跟传统讲课方式相比,这些教学策略可以将学生的理解能力整整提高两个级别。
 The existence of such research results has encouraged many Astro 101 instructors to start implementing those interactive strategies in their classrooms. To further increase instructor awareness of those strategies and to help ensure their proper implementation, researchers at the University of Arizona’s Center for Astronomy Education (CAE) have developed a teaching excellence workshop series with funding from NASA and NSF. Over the past five years, the workshops have been offered at colleges and universities and at national meetings of organizations such as the American Astronomical Society and the American Association of Physics Teachers. The workshops have been attended by more than 1000 college instructors from all types of institutions.  这些研究成果的出现鼓励了许多天文学101的任课教师,他们开始在自己的课堂上实施互动教学策略。为了进一步提高教师们对这些教学策略的认识,确保这些策略的正确实施,亚利桑那大学天文学教育中心(CAE)利用美国航空航天管理局和美国国家科学基金会提供的资助,开办了优化教学系列研修班。在过去的五年中,研修班曾经开办于大学校园中,以及美国天文学会和美国物理教师学会等组织召开的全国性会议上,有一千多名来自各类院校的大学教师参加过研修班的培训。
 To conduct its own national study, the AER community needed a reliable assessment instrument like the physicists’ FCI, but one that covered a central topic of the Astro 101 curriculum. To that end, Erin Bardar and coworkers created the Light and Spectroscopy Concept Inventory (LSCI)—a collection of 26 multiple-choice questions. Light is the central carrier of information in astronomy, and a survey of Astro 101 instructors has shown that they consider the nature of light and the electromagnetic spectrum to be the most important topics in their courses. The topic domains of the LSCI are  为了进行自己的全国性研究,天文学教育研究界也需要一个可靠的评估手段,就象物理学家们的FCI,但是该评估手段要包括天文学101课程中的重要主题。为此,埃里恩·巴达尔及同事创造了光与光谱学概念测试题库(LSCI,这是由26个选择题构成的一组问题。光在天文学中是重要的信息载体,对天文学101教师的调查显示,他们认为光的特性和电磁波普是这门课程中最重要的主题。LSCI的主题范围是:
 ●The nature of the electromagnetic spectrum, including the interrelationships of wavelength, frequency, energy, and propagation speed.  电磁波普的特性,包括波长、频率、能量和传播速度之间的相互作用。
 ●Interpretation of Doppler shift as an indication of motion.  作为运动指示,对多普勒频移的解释。
 ●The correlation of peak wavelength and temperature of a blackbody radiator.  峰值波长与黑体辐射源之间的相互关系。
 ●Relationships between luminosity, temperature, and surface area of a blackbody radiator.  光度、温度和黑体辐射源的表面积之间的关系。
 ●The connection between spectral features and underlying physical processes.  光谱特点与潜在的物理过程之间的关系。
 The LSCI questions, like those of the FCI, were phrased, as much as possible, in ordinary language, and they include “distracters” drawn from common misconceptions. The questions are not easy, and they often require multiple reasoning steps to answer correctly. Three such questions are shown in figure 2. The entire LSCI can be seen at http://aer.noao.edu/auth/LSCIspring2006.pdf.  FCI中的问题一样,LSCI中的问题也是尽可能运用普通语言、运用短句表达的,其中包含由于常见的概念错误而造成的错误选项。这些问题并不容易,往往需要多重的推理步骤才能正确作答。图表2中显示了三个这样的问题,全部问题见http://aer.noao.edu/auth/LSCIspring2006.pdf.

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

【图表2】来自光与光谱学概念测试题库的三道样题,题库用来测评天文学101教学班的学习收获。要想正确地回答这些特定的问题,学生必须既要懂得维恩定律又要懂得斯蒂芬-玻尔兹曼定律。

样题内容:如下所示,利用物体ABCD的光谱曲线回答三个问题,所有四个曲线图的刻度都是一模一样的。

24. 如果有的话,哪一个物体的温度跟物体B是一样的?

a. 物体A

b. 物体C

c. 物体D

d. 所有物体都是同样的温度

e. 所提供的信息不足以回答该问题

25. 如果有的话,哪一个物体的大小可能跟物体D大致是一样的?

a. 物体A

b. 物体B

c. 物体C

d. 所有物体可能都是同样的大小

e. 以上选项都不正确

26. 哪个物体是最小的?

a. 物体A

b. 物体B

c. 物体C

d. 物体D

e. 最小的物体不只是一个

(曲线图简介:纵轴为“每秒钟的能量输出值”,横轴为“波长”,两条虚线之间为“可见光谱区”。)

 

 But does it work?

 LSCI有效吗?

 To bring about a shift in how Astro 101 is taught similar to that motivated by Hake’s study of introductory-physics teaching, we conducted a national study in collaboration with instructors who agreed to use the LSCI, to determine the effectiveness of various teaching strategies in Astro 101 classes. Our 4000-student study covered 69 class sections at 31 colleges that represented all types of institutions, with a wide range of class sizes and instructional styles—traditional and interactive.

 为了使天文学101的教学方法发生转变,使之类似于黑克在基础物理学研究中所推行的方法,我们跟同意使用LSCI的教师协作,进行了一项全国性的研究,以便确定在天文学101的课堂教学中各种教学策略的效果。我们的研究涉及31所具有代表性的各类院校、69个教学班、4000名学生,班容量大小不一,教学方式分为传统式教学和互动式教学。

 Figure 3 shows a plot of learning gain g, measured with the LSCI astronomy questions, versus class-averaged preinstruction score for Astro 101 courses in our study, sorted by type of institution. For comparison, the shaded region indicates the range of results for Hake’s introductory-physics study. The boundaries at g = 0.3 and 0.7 separate the ranges of learning gain that Hake characterized as low, medium, and high.

 图表3是一张表示学习收获参数(g)的图解,学习收获是利用LSCI中的天文学问题测得的,与我们研究中的天文学101教学班学习前的平均分数相对照,并按照教学方式进行了分类。为了进行对比,阴影区域显示了黑克的基础物理学研究中学生成绩的分布范围。根据黑克的描绘,利用学习收获参数g=0.3g=0.7两条界限把学习收获的大小分为低、中、高三个档次。

 One striking result is evident. The range of LSCI preinstruction scores is surprisingly narrow, clustered around 25%, regardless of institution type. That’s very different from Hake’s study, in which pre-instruction scores ranged from 30% to 70%. That discrepancy illustrates a fundamental dif?ference between the student population taking Astro 101 and that taking introductory college-level physics. Many physics students come to introductory college physics having already taken physics in high school. But Astro 101 students are mostly nonscience majors with little prior knowledge of the basic concepts of light and spectroscopy.

 显然,一项成绩非常令人瞩目:不管教学方式如何,利用LSCI测得的学习前成绩差距极小,都集中在25%左右。这一点与黑克研究中的情况大相径庭,黑克研究中的学习前成绩在30%70%之间。这一差距说明学习天文学101的学生群体与学习基础物理的学生群体有着根本的区别。很多前来学习基础大学物理的学生在中学时已经学过物理学;而天文学101的学生大都是非理科专业的大学生,他们以前不了解光和光谱学的基本概念。

 The class learning-gain scores in figure 3 vary widely, from almost 0 to 0.5, illustrating that the LSCI is capable of measuring changes in student understanding and, by extension, the effectiveness of teaching about light and spectroscopy in Astro 101. Because the gains appear to be independent of institution type—and also, as we find, of class size13—we conclude that neither of those two variables can explain the variation in g. This result suggests that type and effectiveness of instruction are crucial variables. Characterizing introductory-physics classes by whether instructors used any of a variety of interactive learning strategies, Hake had demonstrated that—as measured by g—the interactive classes outperformed the traditional lecture-only classrooms, on average, by about a factor of two.

 图表3中的学习收获分数差距很大,从几乎为零到0.5,这说明LSCI可以用来衡量学生在理解上的变化,由此可知,也可以用来衡量天文学101教学班中有关光和光谱学的教学效果。由于学习收获好象跟院校类型无关,同时我们还发现好象跟班容量大小也无关,因此我们断定院校类型和班容量这两个变量都无法解释g的差异。该分析结果表明,教学方式和教学效果是最重要的变量。根据教师是否利用了各种互动学习策略把基础物理学教学班分类之后,通过测定g的数值,黑克证明利用互动策略的教学班比只进行讲解的传统教学班成绩更为突出,平均是后者两倍。

 In our study, we knew that a significant fraction of the instructors were using interactive learning strategies because they were members of the greater national CAE community. We developed a questionnaire for instructors that let us quantify the amount of interactive instruction occurring in each classroom. From each instructor’s responses, we calculated a nominal percentage of time, called the Interactive Assessment Score (IAS), spent on interactive learning strategies during the term. The scores ranged from 0 to 49%, suggesting that our questionnaire was successful at distinguishing different amounts of interactive instruction, and that instructors were not inflating estimates of their classes’ interactivity. If they had been, we would surely have seen many estimates of over 49% and none near 0%. Nonetheless, the IAS is only a first-order indicator of allotted time. It provides no details as to the quality of the implementation or engagement in the classroom.

 在我们的研究中,我们知道有相当一部分教师正在利用互动学习策略,因为他们属于更大的国家级CAE机构中的成员。我们设计了一份问卷,用以量化教师们在每个教学班上所实施的互动教学。根据每个教师的答复,我们计算出一个标准的时间百分比,这个百分比被称为互动评估记录(IAS,反映出一学期当中在互动学习策略上所花时间占课堂教学总时间的百分比。记录显示的百分比从049%不等,这表明我们的问卷能够成功地区分互动教学实施的多与少,也说明教师们并没有过分地估计自己课堂上的互动行为。如果他们夸大了自己的互动教学,我们就会看到很多超过49%的记录,而根本不会有接近0%的记录。然而,IAS只是显示时间分配的初步指标,它没有记录课堂上互动策略的实施质量、学生的参与质量等详细情况。

 In figure 4, we plot g versus IAS for the 52 Astro 101 classes in our study with at least 25 students. We excluded smaller classes because we believe that the teaching and learning in classes with a very small number of students can be a special case, bordering on personalized instruction. Although the plot shows no simple relationship between learn?ing gain and the level of interactivity, it is notable that no class with an IAS below 25% achieved a gain above 0.30.

 在图表4中,我们把学习收获参数gIAS对照绘出,其中涉及我们研究的52个天文学101教学班,每个教学班的人数至少为25人。我们把容量更小的教学班排除在外,因为我们认为容量很小的教学班可能是特殊情况,近似于个别指导。尽管图表4没有显示出学习收获和互动水平之间的直接关系,但可以看出,在IAS位于25%以下的教学班中,学习收获参数位于0.30以上的连一个班都没有。

 By contrast, classes with an IAS above 25% had gains ranging from about 0.05 to 0.5. The average learning gain for those classes was 0.29, more than twice the average gain of 0.13 found for classes with an IAS below 25%. This result is almost identical with that found by Hake for introductory physics. To determine if this dependence on IAS is real, we conducted a statistical-significance test (a t-test) and con?cluded that there is less than a 10–5 chance that the recorded difference in learning gain between the two groups is just a statistical fluke. If this were a medical study of two treatment strategies for a disease, the study would be stopped at this point for ethical reasons, so that every patient could be given the more effective treatment immediately!

 相比之下,IAS超过25%的教学班,学习收获参数从0.050.5不等,平均学习收获参数为0.29,是IAS低于25%的教学班平均学习收获参数(0.13)的两倍多。这个结果跟黑克在基础物理学研究中的发现几乎相同。为了确定这种基于IAS的分析是否真实可靠,我们做了一次具有统计意义的测试(t-test),然后得出结论:有关两类教学班的学习收获参数,所记录下来的差异仅仅属于统计偶然性所致的可能性不到10–5。如果这是关于某种疾病有两种治疗方案的一项医学研究,那么出于道义上的原因研究将会就此停止,以便立即为每个病人实施更加有效的救治!

 To further probe the relationship between interactivity and learning gain, we conducted a multivariate regression analysis to determine how individual differences (for example, personal and family characteristics, academic achievement, and student major) might be correlated with learning gain. The results show that the use of interactive learning strategies is the single most important variable in accounting for the variation in student learning gains, even after controlling for individual characteristics. Furthermore, we find that the positive effects of the interactive strategies are equal for strong and weak students, men and women, regardless of ethnicity or primary language. Our results strongly suggest that all students benefit from interactive learning strategies— because those strategies are based on how humans learn.

 为了进一步研究互动与学习收获之间的关系,我们进行了一项多元化回归分析,以确定个体差异(如:个人和家庭特点、学习成绩和学生所学专业等)与学习收获之间可能存在的相互关系。分析显示:即使在控制了个体差异之后,互动学习策略的运用仍然是解释学生学习收获有所不同的唯一最重要的变量。此外我们发现:不管学生的成绩好坏、不论男生女生、不管属于什么种族、不论掌握的主要语种是什么,互动策略对他们一概具有同样的积极效果。我们的研究成果有力地说明,所有的学生都可以受益于互动学习策略,因为这些策略是以人类的学习方式为基础的。

 Although our data suggest that spending at least 25% of class time on interactive learning strategies can have a large impact on learning, the broad spreading for the higher interactivity classes suggests that the use of such strategies is not enough. The combination of IAS and individual student characteristics used in our multivariate analysis accounts for only 25% of the spread.14 So, what could account for the rest? The answer may come from research findings on the professional development of instructors which suggest that the quality of implementation of instructional strategies has a significant influence on student learning.

 尽管我们的数据表明,至少把25%的课堂时间花在互动学习策略上就可以对学习产生巨大的影响,但是互动程度较高的教学班学习收获参数g分布广泛,这说明互动策略的运用并不到位。在多元化分析中,我们把IAS跟学生的个体差异结合起来,但这只能说明分布情况的25%。那么,如何来说明其余的分布情况呢?或许,有关教师业务进修的研究可以说明问题。在该研究中发现:教学策略的实施质量对学生的学习成绩有着重大的影响。

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

【图表3】在针对天文学101课程进行的全国性研究中,把所有69个教学班的学习收获与本班学习前的平均分数进行了对比。不同的符号代表着教学班所在的院校类型有所不同。院校类型与学习收获参数g之间没有明显的相互关系。学习收获参数的标准就是要把学生学习前的理解水平所造成的影响降至最低。阴影区域表示:1998年黑克在有关基础物理学课程的类似研究中,所测得的学生成绩分布情况(见图表1)。

(图表简介:纵向指标为“班级学习收获参数g”,-0.100.30之间为低,0.300.70之间为中等,0.701.00之间为高;横向指标为“学习前得分”。图中图例自上而下依次为:2年制大学、4年制具有学士学位授予权的大学、4年制具有学士及硕士学位授予权的综合性大学、研究型综合性大学。)

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

【图表4】我们把学习收获参数gIAS对照绘出,其中涉及我们研究的52个天文学101教学班,每个教学班人数至少为25人。我们把容量更小的教学班排除在外,因为我们认为容量很小的教学班可能是特殊情况,近似于个别指导。尽管图表4没有显示出学习收获和互动水平之间的直接关系,但可以看出,在IAS位于25%以下的教学班中,学习收获参数位于0.30以上的连一个班都没有。

(图表简介:纵向指标为“班级学习收获参数g”,横向指标为“互动评估记录—IAS”。)

 Implications

 结语

 Because of its great popularity among nonscience students and its importance for future schoolteachers, Astro 101 has a central role to play in improving the scientific literacy of our nation. Inspired by the success of PER, the AER community has conducted valuable research on teaching and learning in astronomy. Our work demonstrates that every Astro 101 instructor, regardless of the type of institution or class size, can see benefits in student learning by implementing interactive learning strategies.

 由于天文学101在非理科大学生中非常受欢迎,这门课在提高国民的科学素养方面起着重要的作用。天文学教育研究界受到了物理学教育研究成功经验的启发,在天文学教学方面进行了一项颇有价值的研究。我们的研究证明,每一位天文学101教师——不管来自哪一类院校,不管班容量的大小——都能够通过实施互动学习策略使学生在学习上受益。

 Yet a clear message from our research is that the mere use of such learning strategies is not enough. The quality of implementation is crucial, which points to the importance of professional development. College-level instructors typically receive no significant pedagogical training prior to teaching for the first time. Furthermore, many Astro 101 instructors have had no formal training in astronomy. Of the 250 000 students who take Astro 101 each year, 40% do so in a pure physics department, and another 40% take the course in departments that don’t offer degrees in either physics or astron?omy. Thus a large number of students taking Astro 101 are taking it from an instructor who has little or no formal training in astronomy.

 然而,我们通过研究得出一条明确的信息:仅仅利用互动学习策略是不够的。互动策略的实施质量是非常关键的,这就说明了业务进修的重要性。通常,大学教师在第一次教学之前没有接受过任何教学法方面的重要培训。况且,许多天文学101的教师们没有受过正规的天文学培训。在每年参加天文学101学习的25万学生中,40%是纯粹在物理系进行学习的,而还有40%的学生是在不授予物理学或天文学学位的系部进行学习的。竟然有如此大量的天文学101的学生跟着很少或根本没有受过天文学正规培训的教师学习!

 To address such challenges, CAE has created profes?sional-development workshops designed for Astro 101 in?structors with all levels of prior preparation. Those teaching-excellence workshops focus specifically on developing instructors’ pedagogical knowledge. They are based on professional-development best practices,16 and they use research-validated techniques that require instructors to practice teaching strategies in a peer-review environment, in which participants offer suggestions and critiques of one another’s implementation of interactive learning strategies. Beyond those workshop experiences, CAE also provides online professional?development resources through our website at http:// astronomy101.jpl.nasa.gov.

 为了应付这样的挑战,天文学教育中心针对前期水平参差不齐的天文学101教师们,创办了业务提高研修班。这些优化教学的研修班特别注重丰富教师们的教学法知识,以提高业务的最优化实践为基础,利用具有研究效度的技巧,要求教师们在同行评教的环境中练习教学策略——在实施互动学习策略的过程中,参加培训的教师们互相之间可以提供建议或提出批评。除了办过这些研修班,天文学教育中心还通过自己的网站(http:// astronomy101.jpl.nasa.gov.)提供有关业务提高的在线资源。

 Lack of training is not the only barrier to the effective use of interactive learning strategies. Fundamentally changing how we instructors teach requires work on our part. In addition, there is little requirement that we document our students’ learning gains as part of our hiring, promotion, and tenure procedures. Given the amount of work and lack of reward, there can be a natural resistance to change. Thus it is critical for deans, department chairs, other senior faculty, and national organizations to encourage instructors to make the effort to change the way they teach—and reward them for doing so. For example, resources and opportunities should be provided that allow instructors, teaching assistants, and even postdocs to engage in professional-development workshops and that encourage them to implement proven interactive learning strategies in their classrooms.

 在有效地实施互动学习策略方面,缺乏培训并不是唯一的障碍。要想从根本上改变我们教师的教学方式,需要我们自己去努力。此外,校方没有要求我们证明学生在学习上有收获,学生的学习收获也不是教师办理受雇、提职和任期等手续时的必备条件。考虑到工作量大而又没有奖金,教师们对改革自然会有抵触情绪。因此,关键是系主任、系主席、其他的高级教员以及全国性的组织机构要鼓励教师们努力进行教学方法的改革,并且对他们这么做要给予嘉奖。比如,应该拿出财力、提供机会,让教师、教学助理、甚至博士后人员参加业务提高班,鼓励他们在课堂上实施已经得到证明的互动学习策略。

 The ideas of PER and AER are steadily gaining acceptance in physics and astronomy departments nationwide. It is particularly encouraging that many of those who are embracing interactive instructional strategies are early in their careers, which bodes well for the future of Astro 101 instruction. The central role of AER in improving the teaching and learning of astronomy was strengthened by the founding (in 2002) and subsequent growth of the online journal Astronomy Education Review (http://aer.aip.org), published by the American Astronomical Society.

 在全国范围内的物理学和天文学部门中,PERAER的观点正在不断地得到认可。特别令人鼓舞的是,那些正在采用互动教学策略的许多教师都处在教学生涯的早期阶段,这预示着天文学101教学的未来是光明的。随着《天文学教育概览》杂志在线版的创办(2002年)及其后来发展,AER在改进天文学教学方面所起到的重要作用得到强化。《天文学教育概览》杂志是由美国天文学会发行的。

 In addition, members of CAE recently received an NSF grant to create the Collaboration of Astronomy Teaching Scholars. CATS is a large and growing international community working to increase the number of Astro 101 instructors conducting research in astronomy education. The collaboration also aims to spur the development of research-validated curricula and assessment instruments. With a willingness to challenge ourselves—astronomers and physicists alike—to teach Astro 101 using proven instructional strategies, we can improve the way we teach this critical course and thereby improve the scientific literacy of some 250 000 Americans each year.

 此外,天文学教育中心的人员最近收到了美国国家科学基金会的拨款,用于建立天文学教师联合会(CATS)。CATS是一个庞大的、而且正在不断壮大的国际性团体,目标是扩大进行天文学教育研究的天文学101教师队伍。该联合会的另外一个目标是鼓励开发具有研究效度的课程及评估手段。只要我们这些天文学者和物理学者心甘情愿地挑战自我,运用已经证明的教学策略进行天文学101的教学,我们就能够改进这门关键课程的教学方法,从而每年提高大约25万美国人的科学素养。

Interactive learning strategies三个互动学习策略

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

1. 独立思考-对子活动-分享答案(TPS)或同侪教学(PI):首先要求学生针对在概念上具有挑战性的选择题进行独立思考,然后提交答案——通常利用学习卡片或手按式遥控答题器进行提交。接着,教师引导学生跟同桌进行讨论,两人一组,都要为自己的答案进行辩解。在这种私下讨论之后,进行另外一轮表决,也可能来一次全班讨论。

上图中右边的TPS样题表明,仅仅一个问题就可以引起同时涉及好几个主题的讨论。要想对该问题做出正确的推理,就必须能够解释其中的曲线图和圆形图,必须懂得多普勒频移以及行星和恒星轨道的耦合等现象。

样题内容:已知在恒星径向速度曲线上所标出的某个位置,你认为行星会处于什么位置?

(图表简介:左曲线图纵轴为“径向速度”,横轴为“时间”。右图外虚线圆为“行星轨道”,内虚线圆为“恒星轨道”。上部朝右的箭头表明了地球所在的方向。)

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

2. 讲解-指导:这种合作式的学习活动是由经过认真排序的苏格拉底式提问来驱动的。根据设计,每对学生要在1020分钟内完成活动,两人听完相关主题的简短讲解之后,在课堂环境中进行合作。

问题以普通的语言提出,问题的设计是为了逐步提高学生的认知能力,最终引导学生从科学的角度进行理解。起初,要求学生审视一个新奇的情景,该情景需要他们思考在讲解中所听到的信息。接下来的问题难度逐步增加,这些活动包括画图表、填写数据表、做自我检测题,自我检测题可以鼓励学生对自己在观念上的进展情况进行不断的评估。

在讲解天文观察中所涉及的回顾时之后,提出了上图中右边的问题。该例题说明了这种系列问题所带来的挑战。

样题内容:7)右图拍下的是仙女座星系的图片,该星系坐落在250万光年之外,这张图片显示了仙女座星系目前的样子。它过去是什么样子?它未来又会是什么样子?请予以解释。

8)试想象一下,你正在观察来自一颗遥远恒星的光线,该恒星位于1亿光年之外的一个星系中。通过分析接收的光线得知,在图像中所观察到的是一颗年龄有1,000万岁的恒星,同时你也可以预测出该恒星的总寿命将会有5,000万岁,那么它在什么时候将会遭到灾难性的结局而成为超新星?

a. 对于地球上的我们,该恒星看起来有多大年龄?

b. 再过多久我们才能观察到来自超新星事件的光线?

c. 超新星事件会不会已经发生了呢?如果已经发生了,是什么时候发生的?

 

二十一世纪的天文学教学(图) - 月亮飞船 - 欢迎光临月亮飞船的博客

3. 排序任务(RTs):跟LTs大体相同。根据设计,这些合作式的学习活动要在一段简短的讲解之后由成对的学生来完成。任务开始时,利用一系列图表来提供各不相同的基本物理情景。学生通过审阅不同的情景来确定它们的次序或级别。这种RT形式的问题对学生具有挑战性,因为解决这些难题的途径并不是特别显而易见的。多种情景促使学生的大脑忙于思考,迫使他们对一种情景区别于另一种情景的关键特征进行更深层次的思考。

右边的例题为学生提供了画图和问题,只有对月相具有深刻的领会才能对问题正确作答。 

样题内容:在下列图表AF中,每个图表都表明了一种特定的月相,以及在白天或夜晚的某个时刻月球在天空中所处的位置。

排序说明:利用图表AF中的月相所显示的时间来为这些图表排序(按照从最早到最晚的顺序排列),从最早排起(早晨6点)。

排列顺序

最早(大约早晨6点)1_____ 2_____ 3_____ 4_____ 5_____ 6_____ 最晚

解释原因

(图表简介:底下的标线自左向右依次为:东、南、西。)

 

通过对LTs RTs效果进行研究,证明了LTs RTs的实施使学生难以依赖死记硬背的答案,难以利用公式进行机械的套用,但是这么做却有助于开发学生们的心智模式,结果比在传统教学中所获得的心智模式更加灵活、更加强健。

 

From: October 2009  Physics Today  

经 典 日 志 导 读

 美国国家地理2011年最佳太空图片:条纹超新星  壮观的2011年英仙座流星雨(组图) 
 宇宙中暗物质与暗能量之间的关系(图)  宇宙中的第一批黑洞(图+视频)
 厄尔尼诺现象会引起战争(图)  恐龙灭绝之谜:只有一颗小行星撞击地球
 美丽的澳洲野生动植物(组图)  澳大利亚的土著居民改变了当地气候吗?(图)
 异彩纷呈的苍蝇世界(组图)  蚊子为何会选择不同的人去叮咬(图)
 睡眠质量越好,生活质量越高  南佛罗里达的温暖气候对健康的影响

 百科大全

新朋友置入博客的方法点击美女赏析模块代码复制 - gzbopai - GZ博派什么是代码及代码怎么用?









海底世界博古通今奇方妙药民间土方在线读报视觉大餐博客技巧新修藏经生活宝典生命科学宇宙探秘地球环境新书上架在线工具博客游戏实用网址日记边框电脑技巧美女赏析代码使用
家常好菜星座物语购物中心天气在线银行汇集旅游天空租房买房美食天下汽车之家健康成长宠物贴吧时尚女性少儿频道职业搜索手机之家各地大学音乐搜吧游戏基地视频直播电影资讯
新闻联播小说聚集军事基地图片素材非常动漫体育赛事交友天地明星聚集社区论坛笑话大全软件工具空间博客设计学院硬件精灵桌面壁纸摄影部落实用百科曲艺小品篮球播吧法律顾问

民间实用验方(皮肤科)2009年11月4日 - 杨东 - 杨东小园

  评论这张
 
相关小组: 天文爱好者
阅读(9456)| 评论(103)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017